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The problem of studying the motion and stability of an elastic body with cavities con- 

taining fluid is of definite theoretical and applied interest. This problem is an outgrowth 

of the problem of dynamics of a solid with a fluid p]. 
Equation of motion of an elastic body with cavities containing an incompressible fluid 

and boundary conditions are deduced herein from the principle of least action. Condi- 

tions for the existence of some first integrals of the equations of system motion are men- 
tioned. The equilibrium and stationary motion conditions are examined and a definition 

is given for the stability of such motion. 
A theorem reducing the question of the stability of equilibrium or of stationary motion 

to a problem on the minimum of some functional is proved. 

1. Let us consider some free elastic solid having a closed cavity filled entirely or 
partially with an ideal, homogeneous, incompressible fluid. Let us rigidly connect a 
rectangular Cartesian coordinate system &r,ss~s, which remains unchanged, to the 

elastic body in one of its steady states, say the undeformed state. The domains in the 
+rzss space occupied by the elastic body and the fluid at a given time will be deno- 

ted by z1 and &respectively, where Sindenotes the boundary of the domain 7i. 
The surface S,‘of the elastic body consists of the exterior body surface S, and the 

cavity wall surface 6, i.e. S,” = S1 f- Q. 

The fluid surface Sz’ generally corkists of its free surface S and the part a2 of the 
cavity wall surface d with which the fluid is contiguous at a given time, i.e. S2’ = 
= s + 42. 

The part of the. surface Q with which the fluid is not contiguous at the given time is 
denoted by also that Q = $ + 02. 

If the fluid fills the cavity completely, the surface s2’ coincides with the surface 6, 

i.e. -SL = 6 = a2 in this case, there are no surfaces S, and sl. We shall henceforth 
denote the areas of the appropriate surfaces by the same symbols S, a2 . The body and 

fluid densities are denoted by pl and pz, where p 2 = const because of the incompres- 

sibility and homogeneity of the fluid. 

If the fluid partially fills a closed cavity, we shall consider the rest of the cavity to 
be a vacuum with pressure p,, = 0. 

We consider the elastic body and the fluid in its cavity as a single mechanical system, 

and we study its motion relative to some inertial coordinate system of axes ~~1”~2’z$. 
The radius vector of some point p, of the system relative to the point 0 is 
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where r’. is the radius vector of the point 0, rV the radius vector of the point P, rela- 
tive to the point 0. 

According to the theorem on the addition of velocities, the absolute velocity vector 
vy of the point P, can be represented as 

vy = v, -f- 0 x rv + wv (1.2) 
where v,, is the velocity vector of the point 0, o the angular velocity vector of the 

moving &-ixsxa coordinate system, wv the relative velocity vector of the point P,. 
By definition wv, = dr,/dt, where the derivative with respect to the time t is taken 

in the moving coordinate system. The displacement vector of points of the elastic body 

due to elastic deformation are denoted by uv(rvo, t),where rVo is the radius vector of 

the point P, of the body in its undeformed state. We assume the function u (r’, t) to be 

a continuously differentiable function of its arguments. The vector uV is evidently the 

vector of relative displacement of the point P, of the body relative to the moving coor- 

dinate system 0x1x2x8, so that for points of the elastic body 

rV = rvO + uv, du, = w,dt (1.3) 

The kinetic energy of the system is comprised of the kinetic energies of the elastic 
body and the fluid 

E = i/s 2 m,vV2 = 1 /aMvi + Mvo.(~Xr,) + ‘/aoaO-w + 
Y 

+vo* P,wdf+S pawdz +a. 1 plrxwd*+ i p,rXwdr 
) ( 

+. 

+:;,cs p1w2df+ I:p,wzdr ) 
.I > 

71 TX 
(1.4) 

M=Ml+M,, rc = M-’ (M,rl + Mar,), 0 = 0(l) + fjW 

Here M is the system mass, equal to the sum of the elastic body mass Ms and the 
fluid mass MS, rc is the radius vector of the system center of mass relative to the point 

0 , where ri and r2 are radius vectors of the body and fluid centers of mass, @I) and (l(a) 

the inertia tensors of the body and fluid, 8 the system inertia tensor for the point 0, 
the subscript Y denotes summation over all points of the system. 

It is easy to see [I] that the system momentum and moment of momentum vectors 
relative to the point 0 are respectively 

Q : zm,v, -= grad,,l:, G = 2 rv x m,\-, -: grad, E (1.5) 

The equation of motion of an elastic body with a fluid can be deduced from the prin- 

ciple of least action in the Hamilton-Cetrogradskii form, just as is the equation of motion 
of a solid with a fluid [l]. The difference would just be in taking account of the relative 
motion of the points of the elastic body relative to the &lxzxa coordinate system, and 
the internal stresses originating therein, whose density in an area with exterior normal 
n (relative to the considered part of the elastic body) will be denoted by pn. As is known 
[2], the vector p,,is expressed linearly in terms of the stresses p,(i = i ,2,3) on areas 
taken at the same point of the elastic body, which are orthogonal to the xt-axes 

pn .- Pl% + P2’&2 i- P3n3 (1 .fi) 

where ni are cosines of angles formed by the unit external normal vector II and the 
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zt-axes. We denote the projections of the vector pi.on the axis zj by pij,where pij = 

= Pji. 
From the analytical mechanics viewpoint, the internal stresses are the reactions of 

couplings existing between points of the elastic body under the condition of continuity 

of the displacement field u(r”, t). Utilizing the release principle, we include the stresses 
among the active forces by hence considering the possible displacements 6r 1 of points 

of the elastic body relative to the Oqs~~~ coordinate system as perfectly grbitrary 
continuous functions of the coordinates x1 of points of the body. The sum of the elemen- 
tary work of the internal surface stress forces on the possible displacements 6r p, 33 

should hence be included in the work of the active forces in the expression of the Hamil- 
ton-Ostrogradskii principle, 

Performing the appropriate computations, analogous to those on pp. 31-35 in p], we 

obtain the following equations of motion of an elastic body with a flufd in its cavity 

from the principle of least action 

-$+oxQ=K (K = 3 Fv) 
” 

-$+mxG+voxQ=L (L== &xFv) 
v 

(1.8) 

(I .9> 

(1 .lO) 

(1.11) 

and the dynamic boundary conditions 

P,, = F, 0~ S1, p,, = 0 on o1 

PtI=@- 2HcQ)n(*) on 62 
p = 2Ha on .S, cos 8 = - a, I a on ,f 

(1.12) 

Here p is the hydrodynamic pressure, K and L the principal vector and principal 
moment of the external active forces applied to the system, with respect to the pointo; 

F and F, are densities of the mass and external surface forces acting on the elastic 

body and fluid, 01 and alsurface tension coefficients on the fluid vacuum and fluid- 
elastic body surfaces, a the mean curvature of the fluid surface .sa’, 9 the boundary 
angle on the line f of intersection between the free fluid surface S and the cavity walls 

Q , I#) the unit external vector normal to the boundary S,” of the domain 7f (i = i,2). 
Equations (1.8) and (1.9) express the general dynamics theorems of the system momen- 
tum and moment of momentum; (1.10) are the equations of motion of a continuum, 
which take the form of the Euler equations (I. 11) for a perfect fluid. The equation of 
fluid incompressibility div w = 0 (1.13) 

as well as definite kinematic conditions p] on the boundaries of the domainszishould be 
appended to these equations. Let us note that (1.10) and (1.11) are expediently written 

in the relative velocities w in a number of cases, by expressing the absolute velocities 
v according to (I. 2). 

The obtained system of equations of motion (1.8)-(X, ll),(l. 13) is an open system 
of nonlinear equations. To close it, it is necessary to append relationships expressing 
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the stress-strain dependencies, whfch are connected with the selection of a definite con- 
tinuum model. Let us take the model of a solid deformable body, considered as a mate- 

rial continuum, for which the strain processes are reversible. To obtain a closed system 

of equations in this case, it is sufficient to give the external heat influx dq and the inter- 
nal energy U or the free energy A = U - Ts referred to unit body mass, as is known 
[Z]. We shall henceforth assume that the densities of the internal energy U or the free 

energy A are defined completely by the strains and entropies s or the absolute tempe- 

rature T, i. e. by the following functions : 
U = U(eij, s), A = A(eij, T) (1.14) 

where 

1 
Elj=T -_s+~~ 

i 

ihi dUj 

aXj ax, ’ 

denote the finite strain tensor components. 

The stress tensor components are expressed in terms of the strain and entropy or tem- 

perature by the following equations of state : 

au aA 
Pij .= Plq = PlT (1.16) 

where the entropy s or temperature T must be determined by utilizing the thermodyna- 
mic equations 

T_$ a.4 or a :I - - 
C?T (1.17) 

and the equatfons of external heat influx 

dq = T ds (1.18) 

expressing the second law of thermodynamics. 
The right side of this equation can be expressed by taking account of (1.17) or in 

terms of U and s, or A and T. The adiabatic processes dq = ds = 0, consequently 

it is convenient to utilize the internal energy U. For isothermal processes T = con&, 
hence it is convenient to utilize the free energy A ; Eq. (1.18) is used to determine the 
heat infulx. 

Moreover. it is necessary to append the continuity equation of an elastic body 

~p,/~t + div(pIw) = 0 (1.19) 

utilized to determine the body density pr(~r, x2, x8, t), and also the differential equa- 

tions for some variable parameters when the forces acting on the system depend thereon 

PI. 
The dynamic equations (1.8)-( 1.11). the continuity equations (1.13) and (1.19). the 

equations of state (1.16) taking account of (1.15) and (1.17). and the heat influx equa- 
tion (1.18) form, together with the boundary conditions and the equations for the para- 
meters, a complete closed system of nonlinear equations of motion of an elastic body 

with a cavity containing a fluid. 
Let us note that this system of equations can serve as the initial one for various appro- 

ximate equations obtained by means of linearization. 

2. Under specific conditions the equations of motion of an elastic body with a fluid 
admit ofcertain first integrals, of which we examine here the energy and area integrals. 

Let us multiply (1.8) and (1.9) scalarly by v,, and O, respectively, (1.10) and (1.11) 
by wdz and pzwdt, respectively, and let us integrate these latter two results over the 
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domains stand Ta,and then let us add the equations obtained, 

Taking account of the continuity equation, we will hence have [l] 

dE 
- -K.v,+L.o+S(plF+~+~+~,.wdr+ 

dt 

+p,s (1: --;;-gradpfwdr 
I1 

(2.V 

Taking account of the boundary conditions and (1.13)-( 1.18), (1.19), it is easy to 

obtain 

+ 5 p1 s dr + 5, (p - 2Hal) IA@) .wdS 
51 

1 wegradpdr- i pw.n@)ds+ SBHaw.ndS 
71 a1 S 

By virtue of these relationships, (2.1) becomes 

d 
dt 

E+n,+& =K. 
> 

vo+L.o+[ p,F.wdft 
TI . 

+Sp,F.wdr+SF,.wdS+Spt~dr 
71 SI TI 

(2.2) 

II, = 1 p,U dt, 
Cl 

Here l-I, and II2 are the potential strain energy and the surface tension force. Equa- 

tion (2.2) expresses the theorem on the kinetic energy of a system, or the first law of 

thermodynamics. 

Let us note that when there are no internal heat sources in the body, the total heat 

influx per unit time equals the total heat flux within the body through its outer surface, 

i. e. 
(2.3) 

where q denotes the heat flux vector. 
If all the external forces acting on the system were potential forces, possessing a sta- 

tionary force function, then 

K-v, +L.o + s PIF. wdtfs paF.wdr+ 1 F,.wdS= -$ 
21 s1 

In ““YZi~~ ~~li,(Qj,~i)dT-S ~~~~(Si;ll)dT-_Z US(qj,zi)dS 

(2.4) 

(2.5) 
71 TX SI 

denotes the potential energy of the external forces acting on the system, which generally 
depends on the location of the 0xixaxa coordinate system in the 0’xt’xa’~a’ space 
defined by the generalized coordinates qj (j = 1,. . . , n) , and on the shapes of the 
domains zr and 7s and of the body surface Si. Here 17, (qj, xi) and u&j,, 23 denote 
the force functions of the forces applied to the body and fIuid particles, respectively, 
and Us(Qj,xt) is the force function of the surface forces applied to points of the body 

surface S1 . Under conditions (2.3) and (2.4). Eq. (2.2) becomes 
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-&(E+ V) = - j q.ndS (V = 1-r + l-r, + H,) (2.6) 

Here ,y denotes the system poten’tial energy which equals the sum of potential ener- 

gies of the external forces acting on the system, the surface tension forces and the strains. 

Let us note that an equation of the form (2.6) is valid under the assumptions mentioned 

even for a nonfree elastic body with stationary constraints [I]. 

Under the condition that the total heat flux through the body surface is zero, i.e. 

Yi 
q.n&‘::- (J (2.7) 

Sr 
the energy integral 

E + V = h = const (2.8) 
follows immediately from Eq. (2.6). 

Thus, if the external forces acting on the system are potential forces, and conditions 

(2.3) and (2.7) are satisfied, then the sum of the system kinetic and potential energies 

remains constant throughout the motion. 

Now, let us assume that the external forces acting on a free elastic body do not yield 
the moment relative to some fixed axis ta’.under these conditions, the projection of the 

system moment of momentum on this axis remains constant. Indeed, let us multiply (1.8) 

vectorially on the left by the vector r,,’ and let us add to (1.9). we hence obtain the 

equation dG,‘ldt + OX G,m = L + rs” x K, Go. = G + rol XQ (2.9) 
which expresses the theorem on the moment of momentum for a fixed point 0’. Let us 

then multiply (2.9) scalarly by the unit vector is’ in the sa’direction 

&Cc oe -ia') - (&..(i!& + tdxi,~) = 0 (2.10) 

The vector idsatisfies the Poisson equation [l] 

di,‘/dt + o X is’ = 0 

We hence immediately obtain the area integral 

Goe.i9’ = const (2.11) 

This integral holds even for a nonfree elastic body if the constraints imposed admit of 

rotation around the line za’. 

3, In cases when the forces acting on the elastic body and the fluid in its cavity are 
potential forces, and a system potential energy v exists, a system equilibrium position 

can be found according to the principle of virtual displacements from the condition 

(3. I ) 

Here SQ* is the total heat influx to the elastic body. 
Let us assume that the elastic body is either free or constrained by some holonomic 

constraints explicitly independent of the time. Let q,(j = 1, .., n < 6) denote the 
Lagrange coordinates of the 0x,x2x3 reference coordinate system. The system potential 
energy V is a functional dependent on both the coordinates qj’and the body and fluid 
shapes as well, i. e. on the domains 7, and ‘t2 and their boundaries; the strain energy II, 
and surface tension [Is are evidently independent of Qj. 

Let us write (3.1) explicitly by subtracting the term 
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s p div 6r dz = s pn(-).8rdS - s gradp.ihdz= 0 
2) s+ot I, 

from the left side. We will hence have 

n aI’ 
6V=z -6qj-1 (plgradlJ,+ 2 t-2 +z).d*dr- 

3=1 aqj 7, 

- s (pz qrad U, - grad p). 8r dz - s (grad U, - p,,).bdS - 

- 5 ;b - 2Hsl) n@).hdS - \ ” )(p-aHa,)n.~rdSfSp,.brdS+ 
1 02 

-ki p,,.ardLy+i( acos0 +al)n.8rdj+ 5 p1 g6sdr = 6Q* 
L i 71 

By usual means we obtain the system equilibrium equation from this equation 

aV/aqj = 0 (j = 1, . . . ) n) 

p~gradU,+~+~+~=O grad U, - $ grad p = 0 (3.2) 

and the heat influx equation 
6q = T6s 

together with the boundary conditions (1. P2). The coordinates qj of the 0x1x2x9 refer- 
ence system in equilibrium are determined from the first group of these equations, and 
the displacement field of the elastic body and the pressure in the fluid in equilibrium 

are determined from the other groups of equations. 
Let us examine the case when the body is free or constrained by stationary constraints 

admitting rotation of the whole system as a single solid around some fixed line X’a,and 
the forces acting on the system, assumed to be potential, do not yield a moment 

relative to this line. Under these conditions an area integral of the form (2.11) exists 

G,/ = k = const (3.3) 
Let us introduce a system of coordinate axes @%l%fls’ rotating aroud the xi-axis at 

some angular velocity 0. We agree to select the quantity 0 so that the projection of 
the system moment of momentum relative to the 0 &.&Q” coordinate system on the 
x9’-axis would be zero at any time. The total system energy condition can hence be 
represented as 

JE+v= (3.4) 

HereE(‘) is the system kinetic energy while it moves relative to the 0 &%2Xs coor- 
dinate axes, and J is the system moment of inertia with respect to the Xs’-axis. 

Among the real system motions there are, under the assumptions made on the forces 
and constraints, uniform rotations of the whoie system as a single solid around the xs’- 
axis determined from the equation 

bW=hQ*, W=+++V, k,=J,oo (3.5) 
Here w denotes the changed potential energy of the system, k. is a fixed value of 

the constant k of the area integral for uniform rotation of the whole system at the an- 
gular velocity 0,. 

Let us note that W is a functional dependent on the shape of the domains z1 and ~2 
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and their boundaries, and on the coordinates qr (r = I,.. ., n - 1) of the Ox,xaxa 
reference system if it is agreed that qn denotes the angle of rotation around the xs”-axis. 

From (3.5) we obtain the following equations of stationary motion of an elastic body 
with a fluid: 

pi ( gradUl+ -f$-R)+-$ + g+ -$&=O 

grad Lfa + -$$R --$gradp = 0, 8q = -g 6s 

(3.6) 

as well as the boundary conditions (1.12). Here R denotes the vector of the shortest 
distance between the &axis and points of the body or fluid. It is understood that the 

eq~librium equation (3.2) or the stationary motion equation (3.6) can be obtained 
directly from the equations of motion (1.8)-(1, ll), but for us it is important that these 

equations are corollaries of conditions (3.1) or (3.5). which are the conditions for station- 
arity of the potential energy v or the changed potential energy W of the system in the 
case 6Q* = 0. 

4, An elastic body with fluid in its cavity possesses an infinite number of degrees of 
freedom and it must be agreed as to what is to be understood by the stability of its mo- 
tion. 

Firstly, the definition given by Liapunov of stability of the fluid equilibrium mode can 

be taken and extended to an elastic body with a fluid. The stable equilibrium modes are 
hence defined as those modes for which the fluid and body modes remain very slightly 

different from their equiIibrium modes after sufficiently small perturbations have been 

communicated to the fluid and body, at least until arbitrarily fine threadlike or sheetlike 

protuberances form on the surfaces of the fluid and body. Such protuberances may be 
large in a linear dimension but small in volume, and they can thereby sustain small 

portions of the energy, 
Hence, the distances Ii and Ea , the inclinations V, and Vz of the body and fluid defined 

as in p], and the inclinations A1 and Aiz of the perturbed surfaces cia and 5’ to the unper- 

turbed surfaces-o,@) and S@) defined as the differences between the areas of the perturbed 

and unperturbed surfaces are introduced 

At = ~a - ~a@), A2 z Sz - SO) 

Another definition of the stability of the unperturbed motion can be taken by introdu- 

cing some integral characteristics of ~ont~uum motion Cl]. 
For definiteness, let us take Ls norms ‘as relative displacement and velocity fields at 

the time t by defining them by means of the equations 

1 u(i) 112 = - 1 
M, 

s p$l%iZ, 11 d) I]$ = -+ s piWVT (i=l, 2) 
i 

+i 5i 

Definition. If for any arbitrarily assigned positive numbers A1 and Aa, no matter 
how small, there can be selected positive numbers &,, As and h, such that for any initial 

values qB, q g,, w,, Aa, ~0 (or Zio) satisfying the conditions 

IQjof <Ah,7 I qjo I <L \l w$) I[ < h, 114”pa 
( I bl I <hl* vi0 > &3)7 IAioI<ht IWoI<b 

(4.1) 
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and for any t > t, (or at least until V, > el,). the following inequalities would be 

satisfied : 
Iqjj<A,, IQj’l<A,, ll~(~‘l/<Al (IliI<Al) 

IAil<& IIw(‘)ll<As 
(4.2) 

then the unperturbed stationary motion (or equilibrium) of an elastic body with a fluid 

is stable ; otherwise it is unstable. 
Here E denotes some sufficiently small positive number, and &Ii can be considered as 

possible inclinations of the body and fluid p] ; for unperturbed motion qj = 0 (j = 1,. . 
. . . . n - 1 for the stationary motion case, and j = 1, . . . . n for the equilibrium case); 
Xi= 5Oi (i Z= 1,2,3). 

We take the concept of the minimum of the functional w as in [I], which is equivalent 

to the concept of positive definiteness [4] of the functional W - W(O), where W(“’ = 0 

is the value of W for unperturbed motion. 
Let us first consider adiabatic processes of elastic body deformation for which 6Q* = 

= 6s = 0, s = const. 

Theorem 1. If the expression 

IV=+~+v (V) 

has a minimum w(O) (v(O)) for stationary motion (equilibrium) of an elastic body with 
a cavity filled with fluid, then the stationary motion (equilibrium) is stable for adiaba- 

tic processes of elastic body deformation, 

The proof of this theorem is analogous to the proof of Theorem 2 presented below. 
Let us note that we obtain the Lagrange theorem in the case k, = 0. 

Let us now examine the case when the heat flux vector is q = 0 and the temperature 

has the constant value .Tl for unperturbed stationary motion or equilibrium of an elastic 
body with fluid. Let us assume that the thermal boundary conditions are such that a local 

increase in temperature on the body surface is the result of heat flux directed outward, 
i. e. the following condition is valid on the surface of the elastic body Sr: 

(T - Tr1s.n > 0 (4.3) 
This condition evidently includes limit cases of both the complete heat insulation of 

an elastic body when q = 0, and maintenance of the body surface at the constant tem- 

perature T = Tl. 

The vis viva equation (2.6) under the condition (4.3) can easily be transformed into 
the equation a 

;ii 

+TlS + q.gradTdT-TT1 
s 

pr; rlr Q U (4.4) 
rt 7, 

whose right side is positive [4], on the basis of the Clausius-Duhem inequality and the 
complementary Fourier inequality for the heat conduction. As Koiter has shown 

U (Q, s) - Tps = A (cij, T,) + + & (Tl - T)2 (4.5) 

T*=T+O(Tl-T) (0<8<1), 

where C,* denotes the specific heat of the body for constant strain and temperature T*. 
Introducing the rotating 0’&1&az8 coordinate system of Sect. 3. and taking account of 

(4.5), we obtain an inequality from (4.4) 



936 V. V. Rumianuev 

It hence follows that 
g (E(l) + 

’ 

(4.6) 

The subscript 0 here denotes the initial value of the corresponding quantities ; v, is 
the system potential energy 

v1= n+nr+nS++\ CY* 
;,Y 

(TI - ?J’ p1 dT 

in which, in contrast to the expression for V , the strain potential energy of the elastic 

body is taken in the form 
II1 = 

c 
p1 A (Ebb, ?‘I) dr 

. 

i.e. is the total free energy ofthe body for isothermal strains at the constant temperature 

T1. 
Theorem 2. If the expression 

Iv=++ 171 (V,) 

has a minimum for the stationary motion (equilibrium) of an elastic body with a cavity 

containing a fluid, then the stationary motion (equilibrium) is stable. 

Pr on f . Let us derive the system from the considered stationary motion (equilibrium) 
by communicating some sufficiently small initial deflections and velocities to its points 

so that the initial value of the energy IV would be sufficiently small. Left alone, the 

system will later move in conformity with the inequality (4.6). which we rewrite as 

1 kZ - koz 
ti’)_tWf~ / (4.7) 

Let us recall that k denotes the value of the constant area for the perturbed motion, 
and ko for the unperturbed motion. When the unperturbed motion is in equilibrium, then 
k = k. = 0. 

Let A; be some arbitrarily small positive number. Let WI denote the least possible 

value which the functional W can take if one of the cprdinates Qj (i = 1 ,...,n - I), the 

inclination Ai , and the norm 11 I#) 11 (or the distance It ) equals A1 in absolute value, 

and the rest of these values (and the inclination Vi) satisfy the conditions 

lqjl<Al, /AilGAl, IIu(‘);lf’l~ (lliI<A~l, Vi>/“*) (‘(3) 

Let us select the number A1 so small that the following inequality would be satisfied 

1 W, - w”) I < A, (4.9) 

where Aa is an arbirarily assigned positive number. We take the initial values of qj, A<, 

11 u”) 11 (or ri) so small that they would satisfy conditions (4.8) with inequality signs such 
that the initial value Iyo would be less than W1, and the initial velocities w of points of 
the system are such that the inequality 

+ (k2 - ko2) 
1 

--f)+E,(')+W,<W, ,, (&to) 

would be conserved for all values which J can have upon compliance with the conditions 

I Qj I B nI* II II(‘) II d .41 (I I* I < .Jl) (4.11) 

For such a choice of the initial conditions, according to (4.7),we shall have the inequa- 

lity E(1) + W < IY1 (4.12) 
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in all the subsequent time of the motion while the inequalities (4.11) are satisfied, it 

hence follows that W < WI. This inequality will be satisfied at least while lqjl, 14 1, 
11 di’ 11 (or I Ii I) remain not greater than A r. But the initial values of these quantities 
are less than Ar by assumption, and since they change continuously, they cannot become 

greater than A1 without first becoming equal tocAl. But this latter is impossible (under 
the condition Vi > eli) because of (4.12). Taking account of (4.9), it follows from the 
inequality (4.12) that I E(“I < Al, on which basis we deduce compliance with all the 

conditions (4.2). The theorem is proved. 

Let us note that Theorems 1 and 2 remain valid even when the fluid in the cavity is 

viscous p-1, and dissipative forces dependent on qi’(j =i ,..., n - 1) act on the elastic 

body. Moreover, in this case the validity of a theorem analogous to Theorems VI and 

VII in p],(pp. 184-185) can be proved. 
The inversion of the Lagrange theorem given by Chetaev [S], which is analogous to 

the proof of Theorem III in p] (p. 178), can also be extended for an elastic body with 

a fluid. 
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Papers p-51 deal in detail with the stability of steady plane-parallel convective motion 
between planes at different temperatures. The present paper concems the stability of 
the motion which arises between parallel vertical surfaces when the transverse tempera- 

ture difference is accompanied by a longitudinal (upward or downward) temperature gra- 
dient. The presence of a longitudinal temperature gradient has a marked effect on the 

structure of the steady motion (see [S. 71); the character of this effect differs depending 
on whether heat is applied at the bottom or at the top. The effect of top heating on the 
stability of convective motion was investigated by the authors of 18. 91. whose results 
are criticized below. To our knowledge the effect of bottom heating has not been 
investigated. 

We solved the boundary value problem for the amplitudes of the normal perturbations 


